Cross-protective immunity against influenza pH1N1 2009 viruses induced by seasonal influenza A (H3N2) virus is mediated by virus-specific T-cells.
نویسندگان
چکیده
Influenza A (H1N1) viruses of swine origin were introduced into the human population in 2009 and caused a pandemic. The disease burden in the elderly was relatively low, which was attributed to the presence of cross-reacting serum antibodies in this age group, which were raised against seasonal influenza A (H1N1) viruses that circulated before 1957. It has also been described how infection with heterosubtypic influenza viruses can induce some degree of protection against infection by a novel strain of influenza virus. Here, we assess the extent of protective immunity against infection with the 2009 influenza A (H1N1) pandemic influenza virus that is afforded by infection with a seasonal influenza A (H3N2) virus in mice. Mice that experienced a primary A (H3N2) influenza virus infection displayed reduced weight loss after challenge infection and cleared the 2009 influenza A (H1N1) virus infection more rapidly. To elucidate the correlates of protection of this heterosubtypic immunity to pandemic H1N1 virus infection, adoptive transfer experiments were carried out by using selected post-infection lymphocyte populations. Virus-specific CD8(+) T-cells in concert with CD4(+) T-cells were responsible for the observed protection. These findings may not only provide an explanation for epidemiological differences in the incidence of severe pandemic H1N1 infections, they also indicate that the induction of cross-reactive virus-specific CD8(+) and CD4(+) T-cell responses may be a suitable approach for the development of universal influenza vaccines.
منابع مشابه
Seasonal Outbreak of Influenza A virus Infection in Pediatric Age Groups During 2004-2005 in South of Iran
Background: The pandemic and regional influenza outbreaks resulting from antigenic variation of influenza viruses have been the subject of numerous studies which are crucial to the preparation of the vaccine. Frequent global winter outbreaks of influenza viruses require a constant surveillance of emerging influenza variants in order to develop efficient influenza vaccine. Methods: This study wa...
متن کاملVaccination against Human Influenza A/H3N2 Virus Prevents the Induction of Heterosubtypic Immunity against Lethal Infection with Avian Influenza A/H5N1 Virus
Annual vaccination against seasonal influenza viruses is recommended for certain individuals that have a high risk for complications resulting from infection with these viruses. Recently it was recommended in a number of countries including the USA to vaccinate all healthy children between 6 and 59 months of age as well. However, vaccination of immunologically naïve subjects against seasonal in...
متن کاملDetection of Seasonal Influenza H1N1 and H3N2 Viruses using RT-PCR Assay during 2009 Flu Pandemic in Golestan Province
Abstract Background and Objective: The emergence of a novel H1N1influenza A virus of animal origin with transmissibility from human to human poses pandemic concern. Current subtypes of Seasonal influenza A viruses spread in human are influenza A H1N1 influenza A H3N2 and influenza type B viruses. The aim of this study was to determine current strains of the H3N2 and new H1N1 subtypes of influe...
متن کاملPandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross‐reactive immunity in ferrets against infection with viruses drifted for decades
BACKGROUND Alternative influenza vaccines and vaccine production forms are needed as the conventional protein vaccines do not induce broad cross-reactivity against drifted strains. Furthermore, fast vaccine production is especially important in a pandemic situation, and broader vaccine reactivity would diminish the need for frequent change in the vaccine formulations. OBJECTIVE In this study,...
متن کاملEvaluation of In Vitro Cross-Reactivity to Avian H5N1 and Pandemic H1N1 2009 Influenza Following Prime Boost Regimens of Seasonal Influenza Vaccination in Healthy Human Subjects: A Randomised Trial
INTRODUCTION Recent studies have demonstrated that inactivated seasonal influenza vaccines (IIV) may elicit production of heterosubtypic antibodies, which can neutralize avian H5N1 virus in a small proportion of subjects. We hypothesized that prime boost regimens of live and inactivated trivalent seasonal influenza vaccines (LAIV and IIV) would enhance production of heterosubtypic immunity and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of general virology
دوره 92 Pt 10 شماره
صفحات -
تاریخ انتشار 2011